Monitoring energy use on farms, measurements, bookkeeping forms, inventories

J.Ahokas

Plant production

The parts consuming most of the energy are the most important ones!

Energy use on farms

Operation of the production chain or	Diesel fuel	Unit	Secres
material input	or energy		
	consumption		
Primary tillage			
ploughing	25.1	l diesel per ha	1, 2, 3, 4, 7
stubble cultivation (one-pass)			
tine	10.0	l diesel per ha	3
disc	7.2	l diesel per ha	1, 7
Secondary tillage			
levelling of ploughed or stubble cul- tivated soil	4.5	l diesel per ha	2
harrowing (one-pass)	5.4	l diesel per ha	1, 2, 3, 4
Seeding			
combined seeding and fertilizing	3.7	l diesel per ha	2, 3
direct drilling	7.6	l diesel per ha	1, 3
Fertilizer spreading	2.9	l diesel per ha	1, 4
Spraying	1.8	l diesel per ha	1, 2, 3, 4
Combine harvesting	15.1	l diesel per ha	1, 2, 5
Grain drying	120.0	(g diesel oil) per 1kg H ₁ O evaporated	6
Mowing	6.0	l diesel per ha	1, 4
Baling (round bales)	0.5	l diesel per bale	1
Field transport	76.0	(g diesel oil) per ton and km	1
Nitrogen	49.2	MJ kg ⁴	8
Phosphorous as P.O.	15.5	MJ kg ⁻¹	8
Potassium as K.O	9.7	MJ kg ⁻¹	8
Pesticide	273.6	MJ kg ⁻¹	8
Lime	1.3	MJ kg ⁴	9

Table 2. The most important starting values of input energy used in the models.

Example of direct energy consumption

Energy flows

Emissions and losses to water

Emissions and losses to water

Inputs

- Energy flows in and out of the farm must be recorded
- The largest flows are the most importants but also the most economical ones for the farmers are very important
- Strategy
 - Fertilizers and pesticides
 - Usage is important to record but the decrease is important for the farmer only if some other cheaper nutrients are available or the farmer has overdosed
 - The usage is recorded by doing inventories before and after sowing times
 - Agricultural machines
 - Savings in fuel consumption can happen without investment with good work planning, important for the farmer
 - The usage is recorded in machine/work basis
 - Preservation of biomass
 - Energy savings in drying are important if they are economical
 - Other less energy consuming preservation methods could be used in the future
 - Both fuel and electricity uses are recorded

Tractor and field machinery energy consumption

- Energy consumption is recorded I/ha basis
 - This figure is good when consumptions are compared
 - The 'main' tractor, forage and combine harvester fuel consumption should be get in l/ha basis
 - This means that we have to record fuel consumption I/h and also work rate ha/h
- Energy consumption in I/kg product basis
 - We should get some kind of idea also to this figure
 - This means that we should also record yields
- The scope of the recording should be at least farm level but a plot/field level would be desirable

Diesel fuel consumption, calculations

$$q_A[ha/h] = \frac{v[km/h] \cdot b[m]}{10}$$

q_A = work rate [ha/h] v = driving speed [km/h] b = working width [m]

$$f_A[l/ha] = \frac{f_e[l/h]}{q_A[ha/h]}$$

 $\begin{array}{l} f_A = \mbox{fuel consumption [l/ha]} \\ f_A = \mbox{fuel consumption [l/ha]} \\ f_e = \mbox{average fuel consumption during work [l/h]} \\ q_A = \mbox{work rate [ha/h]} \end{array}$

$$m = q_A \cdot y_A$$

m = mass flow [kg/h] y_A = yield [kg/ha] q_A = work rate [ha/h]

$$N_{s} = \frac{f_{A}[l/ha]}{y_{A}[kg/ha]}$$

$$N_{s} = \text{specific fuel consumption [l/kg]}$$

$$f_{A} = \text{fuel consumption [l/ha]}$$

$$y_{A} = \text{yield [kg/ha]}$$

E 70 / 70

For the I/ha calculations we need:

- driving speed
- working width
- fuel consumption

For the specific fuel consumption I/kg we need further:

• yield

Tractors

- Tractors doing the hard work such as tillage, direct drilling, fodder harvest and heavy transport will be equipped with good fuel and work rate following systems
 - Fuel consumption
 - Tractor own information system, if available
 - Recorded fuel filling figures together with tractor hour meter readings
 - The filling stations are equipped with fuel meters
 - Work rate
 - Tractor own information system
 - Vehicle tracking system
 - Registered daily work tasks together with tractor hour meter readings and tractor fuel meter reading
- Tractors whose annual driving time is less than 100 hours will be followed only by bookkeeping

lso ajonäyttö tulee näytölle.

Polttoainepumput

Tankkauskaappi

- tuotto 50 l/min
- automaattipistooli + letku 4 m
- polttoainepumppu 0,37 kW, 230 V
- polttoainemittari
- imupuolen suodatin
- liitin 1"
- sisältää yhdistäjän
- 637.51€

Form

Tractor Register number	Belarus N uin-123	1TZ 820			0 25%	50% 75% ¹	.00%			
Year	Month	Day	Hour	Hour meter	Fuel meter	Work	Width of imp.	Fuel filled	Maintanance	
2010	5	5 1	8:00	5678	75	Harrowing	4	34,5		
			17:00	5683	25					
		1	8:00	5683	100	Harrowing	4	45,2		

Tractor tracking system

Introducing

For complete historical reporting using GPS tracking technology. Find out exactly where your employees 8 assets have been.

- Months of continuous logging on full charge
- Rechargeable & swappable battery
- Over 240,000 detailed locates, latitude, longitude and altitude
- Simply charge, deploy, recover & review
- Photo Geo-tagging

Add these recomended accessories: Lowest Price Available For A Logger Mini Magnetic Case Wall Charger Fast Charge Battery Battery Cover Cover Line Cover C

From data the following items can be read:

- coordinates
- route
- driving speed => work rate

Combine harvesters and self propelled machinery

- Combine harvesters should be equipped if possible with fuel meters and vehicle tracking systems.
- The yields of different fields should also be recorded in order to be able to calculate the energy consumption per harvested mass
- The follow-up of these machines is otherwise the same as with tractors

Chemicals

- Fertilizers are the most important items, which usage must be recorded
- Besides fertilizers also other nutrients such as manure should be recorded
- Pesticides and other chemicals have often very small influence on total energy consumption
- Usage is controlled by inventories and bookkeepings

Grain dryer energy consumption

- Grain dryers must be equipped with fuel consumption and grain moisture meters (if the farmer does not have a good one)
- Electricity consumption meters are not obligatory but they could give more information
- The dryers are normally batch dryers and the dryed volume can be calculated from the dryer volume.
- Grain dryer fuel consumption is expressed as g oil/evaporated kg H₂O or MJ/evaporated kg H₂O

Grain dryer energy consumption

1. Grain mass

Agrosec	MF2	/	A-elev	/	A-160
llmapäädyt	0,5m				

2W	21	22	23	33
m3	12,6	16,9	21,2	24,3
A mm	9600	10600	12100	13100
Bmm	4830	5980	7140	8290

$$M = V_D \cdot \rho$$

M = mass $V_D = dryer volume$ $\rho = bulk density of grain$

2. Evaporated water amount

$$M_{RW} = M \frac{w_h - w_d}{1 - w_h}$$

 M_{RW} = mass of evaporated water M = mass of the dryed grain w_h = moisture content of harvested grain (wb) W_d = moisture content of dryed grain (wb)

3. Consumed oil amount during the batch

$$q_D = \frac{M_{oil}}{M_{RW}}$$

 q_D = specific oil consumption in grain dryer

 M_{oil} = oil consumption in drying

 M_{RW} = mass of evaporated water

Example

Dryer	NNNN					0 250(50%	, 100%					
Volume	45	m3				25%	/5	%					
Furnace													
			Start							End			
Year	Month	Day	Hour	<u>Grain</u>	Plot	Storage silo	Moisture	Fuel meter	kWh meter	Hour	Moisture	Fuel meter	<u>kWh meter</u>
2010	8	12	15:00	rye	A1	75	21,3	234,6	2345,33	1:00	13,3	345,6	2456,66

More accurate grain dryer energy consumption measurement

- Continuos measurements, the following measurement system is needed
- The input or ambient air state (Ts temperature, RHs relative humidity), heated air temperature (Td)
- Output moisture air state (Tm temperature, RHm relative humidity) must be measured continuously during drying.
- The air flow (Va)is quite constant and it can be measured occasionally.

Cold air dryer

- The farms can have cold air dryers for grain, hay or wood chips
- The same procedure can be used as for hot air dryers
- In these cases the drying air may not be heated or it is heated only a small amount
- The main consumption is electricity consumption (fan)

This material has been produced in ENPOS project. ENPOS is acronym for *Energy Positive Farm*.

The project partners are

- University of Helsinki, department of Agricultural Sciences Agrotechnology
- MTT Agrifood Research Finland Agricultural Engineering
- Estonian University of Life Sciences

Project home page is at <u>http://enpos.weebly.com/</u>

The project is financed by the EU Central Baltic IV A Programme 2007-2013

This publication reflects the authors views and the Managing Authority cannot be held liable for the information published by the project partners.

