Energy consumption in animal production, specific figures

Jukka Ahokas UH

Energy use

Specific figures

- What is a specific figure?
- Specific figure is the same as functional unit
- What is a functional unit?
- We use units which is suitable for comparing production
- In milk production we can use:
 - Energy input/produced unit = J/kg milk
- In pork production we can use:
 - Energy input/produced unit = J/kg pork
- With specific (functional) units we can compare:
 - Different production inputs and their effects on production specific figures
 - Different farms
 - Different production types (traditional/organic)
 - Different countries

Energy input/output

• Normal energy inputs are

- Direct energy input
 - Fuels
 - Electricity
 - Feed
- Indirect energy input
 - Some figures are hard to get, for instance building and machine manufacturing energy
 - The energies which are not included should at least mentioned that they are not included
- Energy outputs
 - Milk production
 - After utilizing the milk we will utilize also the meat, this is in most cases included
 - Cows produce also calves, this is also utilized
 - Pork production
 - Are skin and bones utilized, what is their energy content?
 - Is fat utilized, its energy content is very high

Feeding material

- Feeding material is either from own field productions or it is bought
- Feeding material energy input figures can be:
 - heating values of the feed
 - feed production energy consumption figures
 - for concentrates figures found in literature

Milk production

Source: Mikkola & Ahokas. Energy ratios in Finnish agricultural production

Specific figure MJ/kg	Source	Remark
1,6	Mikkola & Ahokas	Only feed production energy is included
3,2	Mikkola & Ahokas	Feed production and housing (+machine) energy included
2,1 - 4,1	Gröönroos	Organic and conventional production in Finland
2,2 – 3,6	Refsgaard	Organic and conventional production
3,1 – 5,0	Thomassen	Organic and conventional farms in Netherlands
1,2 – 3,9	De Boer	Sweden, Netherlands, Germany

Milk production energy ratios

- Enery ratio =Output/Input
- 1 kg of milk = 3 MJ
- E = 3/3,2 = 0,9
- Milk production is not energy positive, more energy is needed in the production than the product has!

Specific figure

1,6 MJ/kg E = 1,9

3,2 MJ/kg E = 0,9

Milk production efficiency

- Energy ratio in plant production. E = 3 – 5
- Milk production efficiency 20 %
- Energy ratio in milk production 0,6 – 1,0 without any shelter

Pork production

Source: Mikkola & Ahokas. Energy ratios in Finnish agricultural production

Specific figure MJ/kg	Source	Remark
10 - 11	Mikkola & Ahokas	Only feed production included
25 – 29	Mikkola & Ahokas	Feed, machines and housing included
15,9 – 22,2	Basset-Mens & van der Werf	
22	Cederberg & Darelius	

Pork production energy ratios

- Enery ratio =Output/Input
- 1 kg of meat = 9 MJ
- E = 9/27 = 0,33
- Pork production is not energy positive, more energy is needed in the production than the product has!

Specific figure

10 MJ/kg E = 0,9

This material has been produced in ENPOS project. ENPOS is acronym for *Energy Positive Farm*.

The project partners are

- University of Helsinki, department of Agricultural Sciences Agrotechnology
- MTT Agrifood Research Finland Agricultural Engineering
- Estonian University of Life Sciences

Project home page is at <u>http://enpos.weebly.com/</u>

The project is financed by the EU Central Baltic IV A Programme 2007-2013

This publication reflects the authors views and the Managing Authority cannot be held liable for the information published by the project partners.

