

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

Energy Positive Farm - ENPOS

Feed and concentrates, machine manufacturing and maintenance, buildings

ENPOS Seminar - Energy use in animal production – Tartu 15 – 16 February 2010 Hannu Mikkola

Outlines of this lesson

- Some refreshing from Otepää seminar
- Energy analysis of
 - Feed and concentrates
 - Buildings
- An Excel exampel of uncertainty analysis with Monte Carlo simulation
- Energy analysis of
 - Machine manufacturing
 - Maintenance

2

Questions, discussion

	ENPOS Seminar	- Energy in animal production -	Tartu - February 15 - 16	2010 16.2.2010
--	---------------	---------------------------------	--------------------------	----------------

What is a system?

- A system consists of
 - 1) some kind of elements
 - 2) relationships between elements
- System is separated with a boundary from the rest of the world
- The rest of the world is called surroundings or environment

Source: Liljenström, H. 2008. System, modell and simulation.

3

ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16 2010 16.2.2010

What is a system?

- A system consists of
 - 1) some kind of elements
 - 2) relationships between elements
- System is separated with a boundary from the rest of the world
- The rest of the world is called surroundings or environment

Source: Liljenström, H. 2008. System, modell and simulation.

4

ENPOS Seminar - Energy in animal production – Tartu - February 15 – 16 2010 16.2.2010

Definition of a system

Energy analysis is an application of systems analysis

ENPOS Seminar - Energy in animal production – Tartu - February 15 – 16 2010 16.2

16.2.2010

6

Energy use for producing feed and concentrates 1 (3)

Animal feeding is today sophisticated science and diets can contain numerous components. Some simplification is needed to avoid excessive work.

Typical fodder for milking cows

- Grass silage
- Concentrated feed containing
 - Milled or crushed grains
 - Protein concentrate
 - Minerals
 - Vitamins
- Hay

> 7

On big farms total mixed ratio made with a mixing wagon

ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16 2010 16.2.2010

Loading a mixing wagon

ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16 2010 16.2.2010

8

Energy use for producing feed and concentrates 2 (3)

Typical fodders for finishing pigs

- Home made fodder containing
 - Milled or crushed grains
 - Protein concentrate
 - Minerals
 - Vitamins
- Industrial fodder, which contains the same components as home made fodder + by-products from food industry (whey, molasses, DDGS = Distiller's Dried Grains with Solubles ,...)

ENPOS Seminar - Energy in animal production – Tartu - February 15 – 16 2010 16.2.2010

Energy use for producing feed and concentrates 3(3)

Principals of the energy analysis:

- 1. Make clear what components is used in fodder and in which ratio
- For components produced on a farm follow the instructions for energy analysis in plant production given in Otepää seminar
- 3. For industrial components
 - Look from manufacturer's website
 - Make a literature review
 - Ask from manufacturer

10	ENPOS Seminar	- Energy in anima	al production – Tartu	- February 15 - 16	2010	16.2.2010

I mportance of feed in animal production from energetic point of view

- In milk production energy for feed production and for housing are approximately as important
- In pork production energy loss with ventilation air (heating) is two times the energy for feed production

ENPOS Seminar - Energy in animal production – Tartu - February 15 – 16 2010 16.2.2010

Quidelines for an energy analysis of a building 1 (4)

1. Find construction drawings, which contain

- > Dimensions of the building
- Constructions in detail

2. If constructions drawings are not available

- Measure the main dimensions
- Make a sketch, which includes windows, doors, etc.
- Record constructions, which can be seen by naked eye
- Consultate the farm manger to figure out hidden constructions
- Take photos, also from details

12ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16 201016.2.2010

Quidelines for an energy analysis of a building 2 (4)

- Define construction energy for elements, which can be expressed in:
 - m² (walls, floors, roof,...)
 - Running meters (slurry canals, footings, fences, gutters, ...)
 - Pieces (windows, doors, hatches, cubicle dividers, ...)
- Define the area, length or number of elements
- Multiply the energy of a unit with the actual area, length or number of elements
- Sum up partial energies

13ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16201016.2.2010

Quidelines for an energy analysis of a building 3 (4)

- Human work is normally ignored
- Excavation work can be a significant energy input but difficult to define → ignored?
- Energy for construction machines is difficult to define → ignored
- Include machines used inside the building if possible
- In the simpliest case the energy t construct a building is:

 $E_{tot} = E_1 + E_2 + E_3 + \dots$

where E_1 , E_2 , E_3 , ... are energy inputs of construction materials

14ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16201016.2.2010

Quidelines for an energy analysis of a building 4 (4)

- Define the life-time of the building
- Allocate the construction energy for
 - The operational period, years
 - Animal places
 - Kilograms of milk, pork, beef, eggs,...

15

ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16 2010 16.2.2010

From where to find information from energy use and emissions of construction materials

- RT Environmental Declarations
 <u>http://www.rts.fi/ymparistoseloste/index_RTED.</u>
 <u>htm</u>
 - All in Finnish but some also in English and Swedish
 - Gives the "ECO-PROFILE OF THE PRODUCT"
 The eco-profile includes the life cycle stages from the acquisition of raw materials to the factory gate.
 - Gives the use of non-renewable and renewable energy
 - Gives emissions to air and water
- EKOTIETO
 - Environmental declarations for buildings and building elements

16ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16201016.2.

16.2.2010

Environmental declarations for buildings and building elements

17ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16 201016.2.2010

Where to find information from energy use and emissions of construction materials

- RT Environmental Declarations <u>http://www.rts.fi/ymparistoseloste/index_RTED.htm</u>
 - All in Finnish but also in English and Swedish
 - Gives the "ECO-PROFILE OF THE PRODUCT"
 The eco-profile includes the life cycle stages from the acquisition of raw materials to the factory gate.
 - Gives the use of non-renewable and renewable energy
 - Gives emissions to air and water

• EKOTIETO

- Environmental declarations for buildings and building elements
- Master thesis of Petro Tamminen and his Excel sheets

ENPOS Seminar - Energy in animal production - Tartu - February 15 - 16 2010 16.2.2010

18

En example, how to calculate the energy per 1 m² external wall

Construction fom outside to inside

- Brickwork
- Air passage
- Porous fibre board
- Insulation material
- Vapour block a plastic film
- Inner covering board normally a gypsym board
- Non-renewable energy 850 MJ/m²
- Renewable energy 380 MJ/m²
- Total energy 1 230 MJ/m²
- Emissions 63 000 g CO₂ –ekv./m²

11/1/	\sim	~	
17777	C	(_
1////	F	\sim	\sim
/////	\sim		- 3
11/1/	\sim	\sim	\sim
77777		ι.	-
/////	K-		
1/////	\sim	~	
27777			-
VIIIA	\sim	\sim	\sim
V////A.	\sim		- 1
11114	\sim	-	\sim
77777	121	ί.	
1////	L/2		\sim
1/////		-	
		r	-
VIIIA		<u> </u>	\sim
VIIIA		-	- 1
VILLA		~~~~	\sim
17777		(
VIIA	\sim	\sim	
VIIA	1		
4444		r -	\sim
11/1/	\sim	N	\sim
VIIIA	1 FD	-	- 1
11/1/	11-	-	$ \rightarrow $
77777	1 m	(
V////		~	\sim
Indiana C. Continuation			

Uncertainty analysis by using Monte Carlo simulation

I nput parameters x_1 , x_2 , x_3 ,... have probability distributions of their own. By means of Monte Carlo simulation we can assess their impact on output parameters.

20 ENPOS Seminar - Energy in animal production – Tartu - February 15 – 16 2010 16.2.2	20	0 ENPOS Seminar - Energy in animal production – Tartu - February 15 – 16 2010	16.2.2010
---	----	---	-----------

Finally, some remarks concerning energy analysis in animal production:

- Should human work be included? ^{hm1}
- What is the life-time of buildings?
- Should recruiting be included? hm3
- At which age a building is totally written off and free from energy costs? hm4
- It is advisible to record CO₂ emissions at the same time as energy use.

Dia 21

hm1	Tutkitaan ylittääkö ihmistyön energiapanos cut-off-kriteerin. Haetaan kirjallisuudesta ihmisen vuotuinen energiankulutus ja se allokoidaan työtuntien suhteessa tuotannolle. Hannu Mikkola; 15.2.2010
hm2	Elinikä lasktaan verotuksessa käytetyn poistoprosentin mukaan. Hannu Mikkola: 15.2.2010

- hm3 Kyllä pitää. Jäi vähän epäselväksi , miten? Hannu Mikkola; 15.2.2010
- hm4 Kun rakennus on verotuksellisessa mielessä poistettu. Hannu Mikkola; 15.2.2010

Energy for machine manufacturing and maintenance

Energy is needed for:

- Rawmaterials: steel, plastic, rubber, glass, ...
- To built and run factories
- Transport
- Service facilities
- Spare part operations
- Human work
- Infrastructure
- ...

22ENPOS Seminar - Energy in animal production - Tartu- February 15 - 16201016.2.2010

Direct and Indirect energy

A problematic, gray region in an energy analysis!

23	ENPOS Seminar - Energy in plant production - Otepää 20-22 January 2010	16.2.201
		0

How to manage this complexity?

- Define the system, what is included and what is exluded
- Split the system into small and understanable pieces
- Define energy need for these small pieces (they can be work operations, material, processes, ..)
- Sum up those energy needs
- Allocate the total energy for products
- Make a sensitivity analysis and uncertainty analysis

24ENPOS Seminar - Energy in animal production - Tartu- February 15 - 16201016.2.2010

This material has been produced in ENPOS project. ENPOS is acronym for *Energy Positive Farm*.

The project partners are

- University of Helsinki, department of Agricultural Sciences Agrotechnology
- MTT Agrifood Research Finland Agricultural Engineering
- Estonian University of Life Sciences

Project home page is at <u>http://enpos.weebly.com/</u>

The project is financed by the EU Central Baltic IV A Programme 2007-2013

This publication reflects the authors views and the Managing Authority cannot be held liable for the information published by the project partners.

